Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders.

نویسندگان

  • M Soledad Cepeda
  • Ray Boston
  • John T Farrar
  • Brian L Strom
چکیده

The aim of this study was to use Monte Carlo simulations to compare logistic regression with propensity scores in terms of bias, precision, empirical coverage probability, empirical power, and robustness when the number of events is low relative to the number of confounders. The authors simulated a cohort study and performed 252,480 trials. In the logistic regression, the bias decreased as the number of events per confounder increased. In the propensity score, the bias decreased as the strength of the association of the exposure with the outcome increased. Propensity scores produced estimates that were less biased, more robust, and more precise than the logistic regression estimates when there were seven or fewer events per confounder. The logistic regression empirical coverage probability increased as the number of events per confounder increased. The propensity score empirical coverage probability decreased after eight or more events per confounder. Overall, the propensity score exhibited more empirical power than logistic regression. Propensity scores are a good alternative to control for imbalances when there are seven or fewer events per confounder; however, empirical power could range from 35% to 60%. Logistic regression is the technique of choice when there are at least eight events per confounder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از Propensity Score برای همسان سازی نمونه ها در یک مطالعه مورد شاهدی

Background and Aim: Case-Control studies provide evidence in the area of health. Validity and accuracy of such studies depend to a large extent on the similarity (similar distributions) of the case and control groups according to confounding variables. Matching is a method for controlling or eliminating the effects of important confounders. Matching using propensity score has recently been intr...

متن کامل

Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

BACKGROUND Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. METHODS We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and...

متن کامل

Systematic differences in treatment effect estimates between propensity score methods and logistic regression.

BACKGROUND In medical research both propensity score methods and logistic regression analysis are used to estimate treatment effects in observational studies. From literature reviews it has been concluded that treatment effect estimates from both methods are quite similar. With this study we will show that there are systematic differences which can be substantial. METHODS We used a simulated ...

متن کامل

Statistical fallibility and the longevity of popes: William Farr meets Wilhelm Lexis.

Hak E, Verheij TJM, Grobbee DE, Nichol KL, Hoes AW. Confounding by indication in non-experimental evaluation of vaccine effectiveness: the example of prevention of influenza complications. J Epidemiol Community Health 2002;56:951–55. 7 Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 2000;342:1887–92. 8 McMa...

متن کامل

The multiple propensity score as control for bias in the comparison of more than two treatment arms: an introduction from a case study in mental health.

BACKGROUND AND OBJECTIVE The propensity score method (PS) has proven to be an effective tool to reduce bias in nonrandomized studies, especially when the number of (potential) confounders is large and dimensionality problems arise. The PS method introduced by Rosenbaum and Rubin is described in detail for studies with 2 treatment options. Since in clinical practice we are often interested in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of epidemiology

دوره 158 3  شماره 

صفحات  -

تاریخ انتشار 2003